Compute SESAME inverse solution on evoked data with source constraints

In this example we shall apply SESAME on an evoked dataset, corresponding to the response to an auditory stimulus. Data are taken from the MNE-Python sample dataset. We shall constrain dipole moments to be normal to the cortical surface.

# Authors: Gianvittorio Luria <luria@dima.unige.it>
#          Annalisa Pascarella <a.pascarella@iac.cnr.it>
#          Sara Sommariva <sommariva@dima.unige.it>
#          Alberto Sorrentino <sorrentino@dima.unige.it>
#
# License: BSD (3-clause)

# sphinx_gallery_thumbnail_number = 2

from os import path as op
import matplotlib.pyplot as plt

from mne.datasets import sample
from mne import read_evokeds
from mne import read_forward_solution, convert_forward_solution, pick_types_forward

from sesameeg.mne import prepare_sesame

data_path = sample.data_path()
subject = 'sample'
subjects_dir = op.join(data_path, 'subjects')
fname_fwd = op.join(data_path, 'MEG', subject,
                    'sample_audvis-meg-eeg-oct-6-fwd.fif')
fname_evoked = op.join(data_path, 'MEG', subject, 'sample_audvis-ave.fif')

Load the forward solution \textbf{G} and the evoked data \textbf{y}. The forward solution also defines the employed brain discretization.

meg_sensor_type = True  # All MEG sensors will be included
eeg_sensor_type = False

# Forward solution
fwd = read_forward_solution(fname_fwd, exclude='bads')
fwd = pick_types_forward(fwd, meg=meg_sensor_type,
                         eeg=eeg_sensor_type, ref_meg=False)
# Impose cortical orientation constraint
fwd = convert_forward_solution(fwd, surf_ori=True, force_fixed=True, use_cps=True)


# Evoked Data
condition = 'Left Auditory'
evoked = read_evokeds(fname_evoked, condition=condition, baseline=(None, 0))
evoked = evoked.pick('meg', exclude='bads')
Reading forward solution from /home/pasca/mne_data/MNE-sample-data/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif...
    Reading a source space...
    Computing patch statistics...
    Patch information added...
    Distance information added...
    [done]
    Reading a source space...
    Computing patch statistics...
    Patch information added...
    Distance information added...
    [done]
    2 source spaces read
    Desired named matrix (kind = 3523) not available
    Read MEG forward solution (7498 sources, 306 channels, free orientations)
    Desired named matrix (kind = 3523) not available
    Read EEG forward solution (7498 sources, 60 channels, free orientations)
    Forward solutions combined: MEG, EEG
    Source spaces transformed to the forward solution coordinate frame
    364 out of 366 channels remain after picking
    305 out of 364 channels remain after picking
    Average patch normals will be employed in the rotation to the local surface coordinates....
    Converting to surface-based source orientations...
    [done]
Reading /home/pasca/mne_data/MNE-sample-data/MEG/sample/sample_audvis-ave.fif ...
    Read a total of 4 projection items:
        PCA-v1 (1 x 102) active
        PCA-v2 (1 x 102) active
        PCA-v3 (1 x 102) active
        Average EEG reference (1 x 60) active
    Found the data of interest:
        t =    -199.80 ...     499.49 ms (Left Auditory)
        0 CTF compensation matrices available
        nave = 55 - aspect type = 100
Projections have already been applied. Setting proj attribute to True.
Applying baseline correction (mode: mean)
Removing projector <Projection | Average EEG reference, active : True, n_channels : 60>

Define the parameters.

time_min, time_max = 0.045, 0.135  # Select N100m
subsample = None
sample_min, sample_max = evoked.time_as_index([time_min, time_max],
                                              use_rounding=True)

# To accelerate the run time of this example, we use a small number of
# particles. We recall that the parameter ``n_parts`` represents, roughly speaking,
# the number of candidate solutions that are tested in the Monte Carlo procedure;
# larger values yield in principle more accurate reconstructions but also entail a
# higher computational cost. Setting the value to about a hundred seems to represent
# a good trade–off.
n_parts = 30
# If None, noise_std and dip_mom_std will be estimated by SESAME.
noise_std = None
dip_mom_std = None


noise_cov = None
# You can make SESAME pre-whiten the data by providing a noise covariance
# from mne import read_cov
# fname_cov = op.join(sample.data_path(), 'MEG', subject,
#                    'sample_audvis-cov.fif')
# noise_cov = read_cov(fname_cov)

Visualize the selected data.

fig = evoked.plot(show=False)
for ax in fig.get_axes()[:2]:
    ax.axvline(time_min, color='r', linewidth=2.0)
    ax.axvline(time_max, color='r', linewidth=2.0)
plt.show()
Gradiometers (203 channels), Magnetometers (102 channels)

Apply SESAME.

_sesame = prepare_sesame(fwd, evoked, n_parts=n_parts, noise_std=noise_std,
                         top_min=time_min, top_max=time_max, dip_mom_std=dip_mom_std,
                         hyper_q=True, noise_cov=noise_cov, subsample=subsample,
                         subject=subject, subjects_dir=subjects_dir)
_sesame.apply_sesame()

# Compute goodness of fit
gof = _sesame.goodness_of_fit()
print('    Goodness of fit with the recorded data: {0}%'.format(round(gof, 4) * 100))

# Compute source dispersion
sd = _sesame.source_dispersion()
print('    Source Dispersion: {0} mm'.format(round(sd, 2)))
Computing inverse operator with 305 channels.
    305 out of 305 channels remain after picking
Forward model with fixed source orientation.
Computing neighbours matrix using combined distance...
 Computing correlation distance matrix...
  Using grad sensors for computation...
    203 out of 305 channels remain after picking
  Using mag sensors for computation...
    102 out of 305 channels remain after picking
 [done]
[done]
Computing neighbours probabilities...[done]
Analyzing data from 0.045 s to 0.1349 s
Estimating dipole moment std...[done]
 Estimated dipole moment std: 3.4988e-08
Sampling hyperprior for dipole moment std.
Estimating noise std...[done]
 Estimated noise std: 3.9983e-12
Computing inverse solution. This will take a while...
Estimated dipole strength variance: 4.963869064542019e-08
    Estimated number of sources: 3
    Estimated source locations:
        * source 1: [-0.05400166 -0.00015956  0.05831272]
        * source 2: [-0.00616284  0.03850401  0.04948525]
        * source 3: [0.04589902 0.00942308 0.06544629]
[done in 121 iterations]
    Goodness of fit with the recorded data: 64.99000000000001%
    Source Dispersion: 0.33 mm

Visualize the posterior map of the dipoles’ location p(r| \textbf{y}, 2) and the estimated sources on the inflated brain.

_sesame.plot_sources(plot_kwargs={'distance': 650})
plot 03 compute sesame meg auditory fixed ori mne
Surface stc computed.

Visualize the amplitude of the estimated sources as function of time.

plot 03 compute sesame meg auditory fixed ori mne

Save results.

# You can save SESAME result in an HDF5 file with:
# _sesame.save_h5(save_fname, sbj=subject, data_path=fname_evoked, fwd_path=fname_fwd)

# You can save SESAME result in a Pickle file with:
# _sesame.save_pkl(save_fname, sbj=subject, data_path=fname_evoked, fwd_path=fname_fwd)

Total running time of the script: (1 minutes 3.348 seconds)

Gallery generated by Sphinx-Gallery